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demonstrate that Pavlovian reactions to anticipated reward or punishment can pose constraints on instrumental 
action, disrupting flexible goal-directed learning.

To date, the biasing effects of Pavlovian learning on behavior have been studied primarily in adult rodents and 
 humans10,17–23. While both Pavlovian and instrumental learning are evident from early  childhood24–27, relatively 
few studies have investigated the interaction between Pavlovian and instrumental learning across development 
in  humans28. Thus, it is unclear when Pavlovian constraints on action learning emerge and how they change 
from childhood to adulthood.

In the present study, we tested the extent to which Pavlovian reactions differentially biased instrumental 
learning across development. We hypothesized that these Pavlovian learning constraints would decrease from 
childhood to adulthood, as the cognitive capabilities and neural circuits that support goal-directed instrumental 
learning are  refined25,29–32. To test this hypothesis, we had 61 participants, 8–25 years of age (20 children aged 
8–12, 20 adolescents aged 13–17, and 21 adults aged 18–25; see methods for detailed demographics of partici-
pants), complete a probabilistic Go/No-Go task in which valence and action were orthogonalized. We adapted 
a well-validated  paradigm20,21,33 for use in a developmental cohort by using a child-friendly narrative to frame 
the task. The goal of the task was to earn as many “tickets” as possible by interacting with four different colored 
robots. Valence (i.e., the potential to either win or lose a ticket) and action (i.e., the need to either press or not 
press a button) were orthogonalized across the four robots. Two of the robots were associated with the potential 
to win a ticket (“ticket givers”), and two robots were associated with the potential loss of a ticket (“ticket takers;” 
Fig. 1). For both “ticket givers” and “ticket takers,” the correct response for one of the robots was to press a button, 
whereas the correct response for the other robot was to withhold a button press. Participants were instructed 
that robots could be either “ticket givers” or “ticket takers” and that the correct action for each robot could be 
learned through feedback. For the “ticket givers,” a correct response resulted in winning a ticket 80% of the time 
but no ticket (the “null” outcome) 20% of the time; whereas for the “ticket takers,” a correct response avoided the 
loss of a ticket (the “null” outcome) 80% of the time but resulted in the loss of a ticket 20% of the time. Incorrect 
responses yielded feedback with reversed outcome probabilities.

The Pavlovian default responses to approach expected reward or to inhibit action in the face of potential 
punishment were aligned with the correct instrumental response on “Go to Win” and “No-Go to Avoid Losing” 
trials, whereas the default responses were in conflict with the optimal instrumental actions on “Go to Avoid Los-
ing” and “No-Go to Win” trials. Critically, a Pavlovian bias was evident if performance was better for the robots 
for which Pavlovian tendencies and correct instrumental responses were congruent than those for which they 
were incongruent. If Pavlovian learning did not bias instrumental action learning, then performance would be 
comparable across all four trial types.

Results
To characterize patterns of age-related change in task performance, we assessed through model comparison 
whether each measure of choice behavior was best captured by a statistical model that included age alone (i.e., a 
linear model) or a model that included an additional nonlinear age-squared term, as in previous  studies34–36. The 
best-fitting model thus indicates whether the developmental trajectory of choice behavior exhibits a continuous 
linear progression from childhood to adulthood, or whether behavior shows either adolescent-specific effects 
(i.e., children’s and adults’ behavior are more similar to each other than to adolescents’ behavior) or adolescent-
emergent effects (i.e., behavior of adolescents is more similar to adults’ behavior than to children’s). Age and 
age-squared were included as continuous variables in all analyses. However, age is represented categorically 
(i.e., grouping children, adolescents, and adults) in some figures for the purpose of depicting results, and we use 
categorical age terminology in our interpretation and discussion of the findings.
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Figure 1.  Task assessing Pavlovian influences on instrumental learning. (a) On each trial, participants saw one 
of four distinctly colored robots (cue). Participants could then either press (“Go”) or not press (“No-Go”) the 
robot’s “button” (the target) when it appeared. (b) Following their choice, participants received probabilistic 
feedback (outcomes for “Win” trials: win a ticket or neither win nor lose a ticket; outcomes for “Avoid Losing” 
trials: neither win nor lose a ticket or lose a ticket). (c) Each uniquely colored robot, which corresponded to one 
of the four trial types, was associated with a correct response (“Go” or “No-Go”) and an outcome (rewards or 
punishments). Pavlovian reactions and instrumental contingencies were aligned for the trial types on the bolded 
diagonal, whereas for the other two trial types they were in opposition.
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Behavioral analyses. First, we tested whether there was a relationship between the number of tickets won 
and participant age. A linear model that included both age and age-squared as predictors of number of tickets 
won significantly improved the fit compared to a model that included age alone (F(1,58) = 15.959, p = 0.0002). 
We found significant effects of age (β value = 7.523, s.e. = 1.804, t(58) = 4.170, p < 0.001, Cohen’s ƒ2 = 0.300) and 
age-squared (β value = −7.334, s.e. = 1.836, t(58) = -3.995, p < 0.001, Cohen’s ƒ2 = 0.275) on the number of tickets 
won, indicating a peak in overall task performance during late adolescence (Fig. 2a).

We next examined how participants’ choice behavior gave rise to this nonlinear age-related change in task 
performance. The qualitative pattern of performance on each trial type is depicted for children, adolescents, 
and adults in Fig. 2b (and Supplementary Fig. S1). To test how performance for each trial type differs as a 
function of age, we performed four separate linear regressions in which age and age-squared predict accuracy. 
The model that included age alone provided the best fit for accuracy on “Go to Win” (GW) trials, although 
age was not a significant predictor (F(1,58) = 0.557, p = 0.458; age: β value = 0.013, s.e. = 0.020, t(58) = 0.647, 
p = 0.52, Cohen’s ƒ2 = 0.007. For all other trial types (i.e., Go to Avoid Losing (GAL), No-Go to Win (NGW), 
No-Go to Avoid Losing (NGAL)), the model that included an age-squared term provided a better fit than the 
model with age alone (GAL: F(1,58) = 9.937, p = 0.003; NGW: F(1,58) = 8.828, p = 0.004; NGAL: F(1,58) = 10.004, 
p = 0.002). For these three trial types, age and age-squared were significant predictors of accuracy (GAL age: 
β value = 0.089, s.e. = 0.020, t(58) = 4.447, p < 0.001, Cohen’s ƒ2 = 0.341; GAL age-squared: β value = − 0.064, 
s.e. = 0.020, t(58) = − 3.152, p = 0.003, Cohen’s ƒ2 = 0.171; NGW age: β value = 0.084, s.e. = 0.038, t(58) = 2.204, 
p = 0.032, Cohen’s ƒ2 = 0.084; NGW age-squared: β value =  − 0.116, s.e. = 0.039, t(58) =  − 2.971, p = 0.004, Cohen’s 
ƒ2 = 0.152; NGAL age: β value = 0.080, s.e. = 0.018, t(58) = 4.402, p < 0.001, Cohen’s ƒ2 = 0.334; NGAL age-squared: 
β value = − 0.058, s.e. = 0.018, t(58) = − 3.163, p = 0.002, Cohen’s ƒ2 = 0.172). Thus, apart from GW for which 
accuracy was the highest and was comparable across age, performance on the other three trial types exhibited 
significant nonlinear improvements from childhood into adulthood.

To quantify the Pavlovian influence on instrumental learning for each individual, we first calculated a Pav-
lovian performance bias score by averaging how often reward-related cues invigorated action (number of Go 
responses to Win cues/total number of Go responses) and how often punishment-related cues suppressed action 
(number of No-Go responses to Avoid Losing cues/total number of No-Go responses). A bias score of 0.5 
indicates the absence of a Pavlovian bias; whereas higher scores reflect a greater Pavlovian bias on action, with 
1 being the maximum bias score. The best-fitting linear model predicting age-related changes in this bias score 
included both age and age-squared as regressors, of which age-squared was a significant predictor of Pavlovian 
performance bias (F(1,58) = 4.136, p = 0.047; age: β value = −0.018, s.e. = 0.014, t(58) = − 1.271, p = 0.209, Cohen’s 
ƒ2 = 0.028; age-squared: β value = 0.03, s.e. = 0.015, t(58) = 2.034, p = 0.047, Cohen’s ƒ2 = 0.071). This analysis 
revealed that children and adults exhibited a greater Pavlovian bias than adolescents (Fig. 3). This bias appears 
to be driven comparably by both a reward-driven invigoration of action and a punishment-driven suppression 
of action (Supplementary Figure S2). A mixed-effects logistic regression corroborated this adolescent-specific 
attenuation of Pavlovian bias on learning (Supplementary Table S1).

computational modeling. By formalizing the value computations involved in learning from valenced 
outcomes, computational models can disentangle the contribution of a Pavlovian bias on choice behavior from 
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Figure 2.  Behavioral performance by age. (a) Number of tickets won is plotted as a function of age. A quadratic 
line of best fit is shown. The error bars represent a .95 confidence interval. (b) Mean accuracy across all trials is 
plotted for each trial type, separately by age group. The darker shaded bars depict the trials for which Pavlovian 
tendencies are aligned with the optimal instrumental response, and the lighter shaded bars depict the trials 
for which Pavlovian tendencies are in conflict with the optimal instrumental response. Yellow points represent 
mean accuracy that was calculated from simulating data using the parameter estimates for each participant from 
the best-fitting model. The following abbreviations are used: GW: Go to Win; GAL: Go to Avoid Losing; NGW: 
No-Go to Win; NGAL: No-Go to Avoid Losing. Error bars represent ± 1 SEM.
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differences in value updating, choice stochasticity, a value-independent bias toward action, or sensitivity to 
reward. We used reinforcement-learning models to dissociate the component processes of learning in the task 
and test whether the age-related changes observed in choice behavior could be attributed specifically to Pavlo-
vian biases on action-value computation over the course of the learning task. We compared a set of nested rein-
forcement-learning models that were fit to participants’ data to determine which model best explained choice 
behavior across all participants. The models were chosen based on prior work in adults using a variant of this 
task (see Supplementary Table S2 for full list of models tested)21,33. Median Akaike Information Criterion (AIC) 
values, for which lower values reflect a better fit, were used to determine which model provided the best explana-
tion of  behavior37.

The model that best fit choice behavior included a learning rate, lapse rate, Go bias, Pavlovian bias, and a single 
reinforcement sensitivity term (Supplementary Table S2; see Methods for details on the other models tested). 
This model estimated an action-value (Q value or Q(a,s)), for each potential action ( a ; i.e., Go or No-Go) for 
each of the four robot stimuli (s). These Q value estimates were updated on every trial (t) using an error-driven 
learning function (Eq. 1). Outcomes (either 1, 0, -1) were included in the model through the reward term (r) and 
multiplied by a reinforcement sensitivity parameter (ρ) that scaled the effective size of rewards and punishments, 
with higher values magnifying differences between Q values. The difference between the effective reward on that 
trial (ρrt) and the previous Q value estimate (Qt-1(at,st)) indexes the reward prediction error, indicating whether 
the effective outcome was better or worse than expected. The Q value estimate was incrementally updated fol-
lowing each outcome by adding the reward prediction error scaled by a learning rate (α).

Two weights were introduced that altered this action value estimate (weighted action estimate (Wt(at,st))). 
The first was a Go bias (b), which captured an increased tendency to press the button (Eq. 2).

The second was a Pavlovian bias term (π) that was multiplied by the stimulus value estimate (Vt(s)) for each 
robot (Eq. 3). The Pavlovian bias parameter indexed the degree to which action was facilitated for cues associated 
with reward and inhibited for those associated with punishment. The stimulus value estimate was updated on 
each trial through reinforcement, in a similar manner to the Q value estimate (Eq. 4).

Action values from the model were transformed into choice probabilities using a squashed softmax choice 
 function38 that included a lapse rate (ξ), which captures the effects of inattention (Eq. 5).

(1)Qt(at , st) = Qt−1(at , st)+ α(ρrt − Qt−1(at , st))

(2)Wt(a, s) =
Qt(a, s)+ b if a = go
Qt(a, s) else

(3)Wt(a, s) =
Qt(a, s)+ b+ πVt(s) if a = go
Qt(a, s) else

(4)Vt(st) = Vt−1(st)+ α(ρrt − Vt−1(st))
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Figure 3.  Pavlovian performance bias score by age. A performance bias of .5 indicates no Pavlovian bias, 
whereas larger scores represent greater Pavlovian interference with instrumental learning. The relationship 
between age and Pavlovian bias score is best fit by a quadratic function. The error bars represent a .95 confidence 
interval.
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We then investigated patterns of age-related change for each free parameter in the model by performing linear 
regressions including age alone or both age and age-squared as predictors. Lapse rate, learning rate, and reinforce-
ment sensitivity were best fit by linear regression models that included age alone (Table 1; Supplementary Fig. S3; 
lapse rate: F = 3.192, p = 0.079; learning rate: F = 0.121, p = 0.729; reinforcement sensitivity: F = 1.057, p = 0.308). 
However, age was not a significant predictor of lapse rate or learning rate, indicating no evidence of age-related 
changes in inattention or updating the value of an action (lapse rate: β value = − 0.027, s.e. = 0.026, t(58) =  − 1.02, 
p = 0.312, Cohen’s ƒ2 = 0.018; learning rate: β value = 0.056, s.e. = 0.033, t(58) = 1.672, p = 0.1, Cohen’s ƒ2 = 0.047). 
There was a significant effect of age on reinforcement sensitivity, revealing greater effective reinforcement with 
age (β value = 0.935, s.e. = 0.396, t(58) = 2.362, p = 0.022, Cohen’s ƒ2 = 0.095). The inclusion of age-squared in the 
model significantly improved the fit for the Go and Pavlovian bias parameters (Go bias: F = 4.447, p = 0.039; 
Pavlovian bias: F = 11.916, p = 0.001). Age-squared, but not linear age, was a significant predictor of the Go 
bias (age: β value =  − 0.039, s.e. = 0.112, t =  − 0.350, p = 0.728, Cohen’s ƒ2 = 0.002; age-squared: β value = 0.24, 
s.e. = 0.114, t = 2.109, p = 0.039, Cohen’s ƒ2 = 0.077). The Pavlovian bias significantly decreased linearly with age 
(β value =  − 0.903, s.e. = 0.223, t =  − 4.044, p = 0.001, Cohen’s ƒ2 = 0.282) and also exhibited a significant effect of 
age-squared (β value = 0.784, s.e. = 0.227, t = 3.452, p = 0.001, Cohen’s ƒ2 = 0.205). These nonlinear effects revealed 
that the Go bias and the Pavlovian bias parameter estimates were both attenuated in adolescents, relative to 
younger and older individuals. The significant linear relationship between Pavlovian bias and age suggests that, 
in addition to an adolescent-specific effect, this bias is highest in the youngest individuals and decreases with age. 
By using the parameter estimates from all compared models to simulate choice behavior for each participant, the 
best-fitting model qualitatively reproduced the pattern of behavior evident in Fig. 2b (see Supplementary Fig. S4 
for predictions from all models). Although parameters from the best-fitting model exhibited some degree of 
correlation (Supplementary Table S3), parameter recovery revealed that all parameters were highly recoverable 
(see Parameter Recovery section of the supplement).

Finally, analysis of response times revealed that older participants made faster responses, and responses to 
reward-associated stimuli were faster when the correct response was “Go” (Supplementary Table S4).

Discussion
In this study, participants were tasked with learning the optimal response to cues that were associated with either 
positive or negative outcomes. We investigated how hard-wired tendencies to approach cues associated with 
reward and to withhold action to cues associated with punishment might differentially constrain participants’ 
ability to learn optimal actions over the course of development. Unexpectedly, we found that adolescents’ learn-
ing was less biased, relative to both younger and older individuals, in two distinct ways. Whereas children and, 
to a lesser extent, adults exhibited a robust Pavlovian bias on their action value learning, this interference was 
reduced in adolescents. Adolescents also displayed a diminished bias toward action over inaction (the “Go” bias).

Adolescents in our study showed better performance in the “No-Go to Win” condition, relative to both adults 
and children. Consistent with our findings, past work in adults using variants of this task has observed the great-
est evidence of Pavlovian interference with instrumental learning in this condition, with performance typically 
approaching chance in this  condition18,21,39. Better performance on “Go to Win” than “No-Go to Win” trials 
can arise not only through reward invigoration of action, but also from an enhanced ability to “assign credit” 
for rewarding outcomes to past actions, rather than to inaction. Previous studies using task designs capable of 
dissociating these features of learning find that adults exhibit both a Pavlovian bias on action learning, as well as 
difficulty linking reward with  inaction39,40. Thus, it is possible that in addition to a reduced Pavlovian bias, ado-
lescents might also exhibit a heightened ability to learn associations between rewards and past inaction. Future 
studies should clarify whether developmental differences in the ability to assign credit to passive responses might 
contribute to adolescents’ superior performance in this task.

Children and adults in our sample, but not adolescents, exhibited a robust Pavlovian bias that was, in part, 
driven by a suppression of action to punishment-associated cues. In environments in which outcomes are stochas-
tic, actions that are beneficial, on average, may yield occasional negative outcomes. Strong Pavlovian biases may 

(5)p(at |st) =

[

exp(W(at |st)
∑

a′ exp (W(a′|st))

]

(1− ξ)+
ξ

2

Table 1.  Reinforcement learning parameter estimates. Median parameter estimates, as well as the first 
(Q1) and third (Q3) quartile, are shown separately for each categorical age group. Linear regressions were 
performed to test the relationship of each parameter estimates with age, which was included as a continuous 
variable. The addition of age-squared was compared against a model including age alone to identify the best-
fitting model, which is listed in the column on the right.

Parameter

Median (Q1,Q3)

Regression fit: age vs.  age2Child Adolescent Adult

Lapse rate (ξ) 0.075 (0.016, 0.250) 0.067 (0.008, 0.229) 0.026 (0.007, 0.139) Age

Learning rate (α) 0.223 (0.055, 0.467) 0.364 (0.173, 0.517) 0.482 (0.164, 0.573) Age

Go bias (b) 0.537 (0.143, 0.942) 0.215 (− 0.007, 0.491) 0.310 (0.006, 1.04) Age2

Pav bias (π) 1.388 (0.502, 2.694) 0.229 (0.167, 0.411) 0.398 (0.113, 0.862) Age2

Reinforcement Sensitivity (ρ) 3.159 (1.750, 4.247) 4.846 (3.835, 8.383) 4.512 (2.329, 8.758) Age
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prevent the continued engagement with previously punished contexts that is necessary to discover the opportuni-
ties for reward that they  present41–43. Such tendencies to reflexively withdraw from or avoid situations associated 
with negative outcomes represent a type of “learning trap” that hinders an individual from sampling sufficiently 
to discern the true statistics of an environment, allowing potential rewards to go  undiscovered44,45. Given the 
many novel contexts that adolescents encounter during their transition toward parental  independence46,47, a 
reduced Pavlovian bias might facilitate exploration and unbiased evaluation of action values, allowing adoles-
cents to approach uncertain or ambiguous situations to discover their true  value48. However, such willingness to 
continue sampling in stochastic environments that may yield negative outcomes may contribute to a seemingly 
heightened willingness to take risks during this developmental  stage49,50.

Pavlovian responses serve critical survival  functions51,52. However, their expression can also constrain the 
flexibility of learning. Theoretical accounts propose that the degree of control afforded in learning environments 
may be used to optimally calibrate the expression of Pavlovian versus instrumental  responses53–56. Instrumental 
learning is only adaptive in controllable environments, in which actions can leverage the true contingent causal 
structure of the environment to bring about beneficial outcomes. In contexts where outcomes are not contingent, 
the latent assumptions of causality inherent in instrumental learning are overly complex and  inaccurate57, and 
reliance on Pavlovian “default” response tendencies may instead be optimal. In active avoidance paradigms, 
which afford the opportunity for instrumental control of outcomes, adolescent rodents learn to proactively pre-
vent punishment (e.g., by shuttling) better than younger and older animals, whose performance is impaired to a 
greater degree by the competing Pavlovian tendency to freeze in the face of  threat15,58. However, in uncontrollable 
environments, in which there is no effective instrumental response to an anticipated threat, adolescents readily 
learn and express Pavlovian responses that are particularly resistant to subsequent  extinction59,60. A parsimonious 
account of these seemingly inconsistent findings may be that adolescents are particularly effective at detecting 
the controllability of a given situation and calibrating their reliance on Pavlovian versus instrumental action 
accordingly. Our finding of an adolescent-specific reduction in Pavlovian bias accords with this explanation, as 
adolescents might infer the highly controllable nature of our task and adaptively deploy instrumental action. 
However, further studies are needed to clarify whether the degree of environmental controllability modulates 
the expression of motivated behaviors differentially across development.

Studies examining the neural substrates of Pavlovian bias in adults suggest how age-related changes in 
the brain might give rise to the developmental pattern of behavior observed here. Consistent with computa-
tional models proposing that the value of both stimuli and actions are evaluated during  learning61–63, the ventral 
and dorsal striatum, respectively, encode signals consistent with these  computations64, and facilitate Pavlovian 
and instrumental  behaviors65,66. The prefrontal cortex, through its projections to and from the striatum, is pro-
posed to exhibit sensitivity to contexts in which stimulus and action values conflict and to enable attenuation 
of Pavlovian reactive biases in such  contexts18,21,39. Corticostriatal circuitry undergoes marked structural and 
functional age-related changes from childhood into  adulthood25,32,67–74. Reduced corticostriatal connectivity in 
children might constrain their ability to modulate Pavlovian biases on action learning, leading to the height-
ened expression of valence-action coupling in our youngest participants. Developmental increases in the inte-
gration between the prefrontal cortex and striatum may contribute to the linear reductions in these reactive 
responses with age. Dopamine, a neurotransmitter that innervates both the prefrontal cortex and the striatum, 
appears to modulate the expression of Pavlovian learning  biases33,40. The dopaminergic system exhibits substan-
tial reorganization across  adolescence75,76, including nonlinear changes in dopamine receptor and transporter 
 density77–81. Moreover, dopaminergic projections from the striatum to the prefrontal cortex continue to develop 
in  adolescence82,83. Such nonlinear changes in the dopaminergic system and corticostriatal connectivity might 
contribute to the adolescent-specific attenuation of the Pavlovian bias. While the combined influence of these 
linear and nonlinear changes in corticostriatal circuits and dopaminergic signaling likely contributes to the devel-
opmental trajectory of Pavlovian bias expression, future studies are needed to understand the neural mechanisms 
underlying the age-related pattern observed here.

Although our study focused on interactions between Pavlovian and instrumental learning, an extensive 
literature further distinguishes two forms of instrumental action that are proposed to reflect distinct underlying 
 computations84,85. “Goal-directed” actions are proposed to arise from a “model-based” learning process that 
computes the value of an action by prospectively searching a mental model of task contingencies and outcomes. 
In contrast, “habitual” action learning, forgoes the use of a model, instead allowing rewarding outcomes to 
directly reinforce associations between stimuli and responses. Habitual behavior is well approximated by a 
“model-free” reinforcement-learning algorithm that incrementally updates a stored estimate of the value of an 
action. Importantly, these two forms of instrumental action differ in their sensitivity to Pavlovian influence. 
Pavlovian reactions interfere with habitual behavior to a greater extent than goal-directed  action22,86. Across 
tasks that assess these distinct forms of learning, adults who rely more on model-based strategies also exhibit 
reduced Pavlovian  bias87. Moreover, pharmacological manipulation of dopamine alters both Pavlovian  bias33,40 
and the use of model-based  strategies88, suggesting that a common neural mechanism contributes to the expres-
sion these distinct forms of value-based learning. While our task cannot directly differentiate goal-directed and 
habitual forms of instrumental learning, both goal-directed behavior and the model-based evaluations proposed 
to support it have been found to increase with age across  development25,89–92. Thus, children’s greater reliance 
on model-free instrumental learning may confer heightened vulnerability to Pavlovian interference, with a shift 
toward model-based computation conferring greater resistance to Pavlovian bias with age.

The present study examined the extent to which Pavlovian responses constrain flexible action learning in 
healthy development. However, strong Pavlovian influences on instrumental action are characteristic of many 
forms of psychopathology that typically emerge during  adolescence93,94, including substance abuse and anxi-
ety  disorders95–99. Adolescence is a period of heightened plasticity in the neural circuits that govern motivated 
 behavior24,100–103, which may render adolescents’ expression of Pavlovian action biases particularly sensitive to 
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experiential variation, such as stress  exposure103,104. Consistent with this notion, past studies in rodents have 
observed that adolescents’ tendency to imbue cues that predict reward or punishment with inherent motivational 
value (i.e., “sign-tracking”), is reduced relative to adult  animals105,106, but that this age-related pattern is reversed 
when adolescent animals are exposed to adverse rearing  environments107,108. This experiential sensitivity aligns 
with evidence in humans that Pavlovian biases on action learning are exacerbated following adolescent exposure 
to  trauma109. Further studies examining how life experience interacts with neural plasticity during adolescence 
to shape learning may shed light on mechanisms that promote resilience or susceptibility to psychopathology.

In this study, we characterized the developmental trajectory of reflexive Pavlovian constraints on flexible 
action learning. We found that the extent to which these valence-specific response tendencies interfered with 
instrumental action changed nonlinearly with age, showing a selective attenuation during adolescence. This 
decreased expression of hard-wired behavioral responses enables greater behavioral flexibility as adolescents 
learn to respond adaptively to opportunities and challenges in their environment. The influence of Pavlovian 
learning biases on fundamental behaviors that change over development such as exploration and planning, as 
well as their mechanistic role in multiple forms of psychopathology that typically emerge prior to adulthood, 
underscores the importance of a deeper understanding of how interactions between Pavlovian and instrumental 
learning systems contribute to adaptive and maladaptive behavior over the course of development.

Methods
participants. Previous studies in adults using variants of this task found robust valence-action coupling in 
sample sizes of 20 participants  total20,21 or group differences with 20–30 participants per  group110,111. Thus, we 
targeted a sample size of 20 participants in each age bin, for a total of 60 participants. This is in line with sample 
sizes for previous studies that have examined developmental changes in evaluative  processes36,89,92. Participants 
were recruited from the New York City metropolitan area through flyers and outreach events. Participants were 
screened to exclude for a diagnosis of mood or anxiety disorders, a learning disability, current use of  beta-
blockers or psychoactive medications, or colorblindness. Sixty-two individuals participated in the study. Data 
from one child were excluded due to a technical error. Our final sample size was 61 participants, consisting of 
20 children (8–12 years old, n = 10 female, mean age: 10.55, SD: 1.34), 20 adolescents (13–17 years old, n = 11 
female, mean age: 15.38, SD: 1.45), and 21 adults (18–25 years old, n = 10 female, mean age: 21.28, SD: 2.19). The 
sample included 31 Caucasians (50.82%), 14 individuals of mixed race (22.95%), 12 Asians (19.67%), 3 African 
Americans (4.92%), and 1 Pacific Islander (1.64%). Eleven participants identified as Hispanic (18.03%). The 
study protocol was approved by New York University’s Institutional Review Board, the University Committee 
on Activities Involving Human Subjects. All research was performed in accordance with the relevant guidelines 
and regulations. All adult participants and parents of minors provided written informed consent and minors 
provided assent prior to the study.

task details. On each trial, participants saw the cue, which was one of the four robots (1,000 ms), followed 
by a fixation cross (250–3,500 ms), and then the target (described to participants as the robot’s “button”). When 
participants saw the robot’s “button”, they could decide whether to press the button via a keyboard press (“Go” 
response) or not press the button (“No-Go” response). Participants had 1,500 ms to respond. If they made a “Go” 
response, the border of the target would enlarge for the remainder of the 1,500 ms. Following the target, another 
fixation cross appeared on the screen (1,000 ms) prior to receiving probabilistic feedback (2000 ms). During the 
inter-trial interval, a fixation cross was presented on the screen (750–1,500 ms).

There were 45 trials for each of the four trial types, resulting in 180 trials total. The colors of the robots 
were randomized across participants. Stimuli were presented in pseudo-random order ensuring that each robot 
appeared fifteen times in each of three blocks. After every block of 60 trials, participants were given a break. Prior 
to the task, participants practiced making “Go” responses by pressing the button and withholding their button 
press to make “No-Go” responses. Participants also practiced pressing a button and not pressing a button for 
each type of robot, experiencing that a given robot would give (or take) a ticket for one action and not give (or 
take) a ticket for the other action. The probabilistic nature of the reinforcements was learned through instruc-
tion and experience during the actual game, although no information about the reinforcement probabilities was 
provided. To encourage learning, participants were instructed that the greater number of tickets won would 
result in more bonus money at the end of the study, though they were not informed of the specific relationship 
between tickets and money. In reality, all participants received a $5 bonus regardless of their performance on 
the task. This experiment was programmed using Cogent 2000, a MATLAB toolbox.

Statistical analysis. Age and age-squared were z-scored prior to inclusion in any linear regression. To cal-
culate age-squared, age was first z-scored and then squared. All p-values reported within the manuscript reflect 
a two-tailed significance test unless otherwise indicated. Cohen’s ƒ2 is a measure of effect size for regression 
analyses and can be used to calculate the local effect size of predictors in multiple regression. Small, medium, 
and large effect sizes are represented by ƒ2 ≥ 0.02, ƒ2 ≥ 0.15, and ƒ2 ≥ 0.35,  respectively112.

computational models. Model fitting procedures and parameter estimation were performed using maxi-
mum a posteriori method using the fmincon function in Matlab 9.1.0. In addition to the best-fitting model, we 
also compared models that divided the reinforcement sensitivity term into separate reward sensitivity (ρrew) 
and punishment sensitivity (ρpun) parameters, capturing asymmetry in the effective size of positive and negative 
reinforcement. Whereas the best-fitting model included weights on the action estimate, in the simplest models 
the weighted action estimate (Wt(at,st)) was equivalent to the Q value estimate.
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The parameters were constrained as follows: the lapse rate and learning rate between 0 to 1; the reinforce-
ment sensitivity parameters (ρ, ρrew, ρpun) and the Pavlovian bias between 0 and ∞; the Go bias parameter was not 
constrained (-∞ to ∞). Priors were chosen to be minimally informative and were based on previous reinforce-
ment learning  studies113. A prior of Beta(1.1, 1.1) was employed for parameters constrained between 0 and 1. A 
prior of Normal(0, 1) was employed for parameters constrained between negative infinity and infinity. A prior 
of Gamma(2, 3) was employed for parameters constrained between 0 and infinity.

Data availability
Data are available on Open Science Framework: https ://osf.io/4h6ne /.

code availability
Code to reproduce all analyses in the manuscript can be found on Open Science Framework: https ://osf.io/4h6ne /.
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