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From early in life, we encounter both controllable environments, in which our actions can causally influence the reward

outcomes we experience, and uncontrollable environments, in which they cannot. Environmental controllability is theoret-

ically proposed to organize our behavior. In controllable contexts, we can learn to proactively select instrumental actions

that bring about desired outcomes. In uncontrollable environments, Pavlovian learning enables hard-wired, reflexive reac-

tions to anticipated, motivationally salient events, providing “default” behavioral responses. Previous studies characterizing

the balance between Pavlovian and instrumental learning systems across development have yielded divergent findings, with

some studies observing heightened expression of Pavlovian learning during adolescence and others observing a reduced

influence of Pavlovian learning during this developmental stage. In this study, we aimed to investigate whether a theoretical

model of controllability-dependent arbitration between learning systems might explain these seemingly divergent findings

in the developmental literature, with the specific hypothesis that adolescents’ action selection might be particularly sensitive

to environmental controllability. To test this hypothesis, 90 participants, aged 8–27, performed a probabilistic-learning task

that enables estimation of Pavlovian influence on instrumental learning, across both controllable and uncontrollable con-

ditions. We fit participants’ data with a reinforcement-learning model in which controllability inferences adaptively mod-

ulate the dominance of Pavlovian versus instrumental control. Relative to children and adults, adolescents exhibited greater

flexibility in calibrating the expression of Pavlovian bias to the degree of environmental controllability. These findings

suggest that sensitivity to environmental reward statistics that organize motivated behavior may be heightened during

adolescence.

[Supplemental material is available for this article.]

From a young age, the positive and negative consequences of our
actions guide our behavior. Adaptive action selection reflects a
dynamic balance between instrumental and Pavlovian evaluative
systems that learn from rewards and punishments in different
ways. Instrumental learning promotes the selection of actions
that effectively lead to reward or avoid punishment. In contrast,
the Pavlovian system learns the positive or negative values of stim-
uli (Pavlov 2010). These stimuli can then elicit reflexive, evolution-
arily hard-wired behavioral responses that couple valence and
action,with expectations of reward promoting active, approachbe-
haviors and expectations of punishment inhibiting action (Wil-
liams and Williams 1969; Bolles 1970; Hershberger 1986; Gray
and McNaughton 2003). Flexible arbitration between Pavlovian
and instrumental behavioral control may be particularly impor-
tant for navigating the environments that individuals encounter
during adolescence—a period associated with greater exploration
and increased autonomy (Spear 2000). Instrumental control can
support the discovery of actions that yield rewarding outcomes
across novel social and environmental contexts, whereas Pavlovi-
an control may enable greater safety when exploring environ-
ments in which there is a potential threat (Kavaliers and Choleris
2001; Moscarello and Hartley 2017).

Importantly, Pavlovian and instrumental learning systems
can cooperate or compete (O’Doherty 2016). Studies of interactive
dynamics between Pavlovian and instrumental learning systems

in adult humans and animals have yielded convergent findings
across species. When Pavlovian reactions are aligned with action-
outcome contingencies in the environment, instrumental actions
are typically invigorated. For example, the presentation of a food-
predictive cue typically causes animals to lever-press more vigor-
ously for an instrumentally obtained food reward. However, de-
fault Pavlovian reactions that conflict with action-outcome
contingencies can hinder instrumental learning. For example,
across species, individuals exhibit difficulty learning tomake active
motor responses to avoid shock following threat-predictive cues
(Estes 1943; Holland 1979; Talmi et al. 2008; Galatzer-Levy et al.
2014; Guitart-Masip et al. 2014; Hartley et al. 2014).

Work examining developmental changes in the expression of
Pavlovian responses and their interaction with instrumental learn-
ing have yielded conflicting findings. Studies in humans suggest
that Pavlovian interference with instrumental learning decreases
from childhood to adolescence (Raab and Hartley 2020), stabilizes
from adolescence to early adulthood (Moutoussis et al. 2018), and
then increases again with aging into older adulthood (Betts et al.
2020). Rodent studies are somewhat consistent with these observa-
tions, demonstrating that compared to juveniles or adults, adoles-
cent animals exhibit better learning of active instrumental
responses to avoid shock delivery (Stavnes and Sprott 1975;
Bauer 1978). However, multiple studies have also demonstrated
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that adolescents readily acquire Pavlovian conditioned threat re-
sponses and in fact, show heightened expression of these responses
during extinction (McCallum et al. 2010; Kim et al. 2011; Pattwell
et al. 2012), relative to both preadolescents and adults.

A parsimonious account for these seemingly conflicting find-
ings might be that adolescents are particularly adept at calibrating
their expression of Pavlovian responding to the degree of control-
lability of the learning environment. Theoretical proposals have
suggested that an “optimal” learner should arbitrate between the
use of Pavlovian and instrumental learning systems based on their
assessment of environmental controllability (Moscarello and
Hartley 2017; Dorfman and Gershman 2019). In high-control en-
vironments, instrumental learning can enable the discovery and
exploitation of beneficial responses and should be prioritized
(e.g., learning an action to avoid an anticipated shock). However,
in uncontrollable environments, where actions have no causal in-
fluence on experienced events, the additional computational com-
plexity involved in trying to learn action-outcome relations is
unnecessary (Dorfman and Gershman 2019), and simpler
Pavlovian reactions (e.g., freezing in a state of threat) can serve as
“default” behavioral responses. Consistent with this theoretical ac-
count, empirical studies in adult humans and animals have found
that Pavlovian responding is attenuated in controllable environ-
ments and increases in uncontrollable environments (Overmier
and Seligman 1967; Maier and Seligman 1976; Baratta et al.
2007; Hartley et al. 2014; Dorfman and Gershman 2019; Csifcsák
et al. 2020; Gershman et al. 2021). However, while controllability-
dependent arbitrationbetween learning systemshas beenobserved
in adults, to date, the developmental trajectory of this ability re-
mains uncharacterized.

In this study, we examined how environmental controlla-
bility affects the balance between Pavlovian and instrumental
learning across development. We hypothesized that adolescents
might exhibit heightened sensitivity to environmental controlla-
bility. Such a hypothesis could account for the varied patterns of
Pavlovian behavioral expression observed in prior studies, in
which adolescents exhibited heightened expression of extinction-
resistant Pavlovian responding in uncontrollable conditioning
paradigms (McCallum et al. 2010; Kim et al. 2011; Pattwell et al.
2012), but reduced Pavlovian interference in controllable, instru-
mental learning paradigms (Stavnes and Sprott 1975; Bauer
1978). To test this hypothesis, we manipulated the degree of out-
come controllability by adding an uncontrollable condition to a
child-friendly probabilistic-learning task, in which valence and ac-

tion were orthogonalized (Raab and Hartley 2020, adapted from
Guitart-Masip et al. 2011), leveraging a computational model to
quantify controllability-dependent arbitration between learning
systems. We expected that participants across ages would show
greater expression of Pavlovian bias in the uncontrollable versus
controllable condition, and that relative to children and young
adults, adolescents would show greater flexibility in calibrating
their expression of Pavlovian bias to the controllability of the
environment.

Results

Approach
Ninety participants, ages 8–27 yr (N=90; mean age=16.34 yr, stan-
dard deviation [SD] age=5.52 yr, 45 females, 45 males) (see
Materials and Methods; Supplemental Fig. S1) performed a child-
friendly adaptation of a probabilistic Go/No-Go reward learning
task in which valence and action were orthogonalized (Raab and
Hartley 2020, adapted from Guitart-Masip et al. 2011). The goal of
the task was to earn asmany tickets as possible by choosingwhether
to “press” or “not to press” a virtual button in response to a stimulus
(robot) (Fig. 1A). Each robot was either a “Ticket Giver” or “Ticket
Taker.” Ticket Givers could either give one ticket or do nothing.
Ticket Takers could either take one ticket or do nothing.

Valence and action were orthogonalized such that each of the
four robots was associated with a distinct valence-action pairing,
leading to four trial types (i.e., Go to Win, Go to Avoid Losing,
No-Go to Win, and No-Go to Avoid Losing) (Fig. 1B). In the con-
trollable condition, a correct action resulted in the better outcome
80% of the time (a ticket for Ticket Givers and nothing for Ticket
Takers) and the worse outcome 20% of the time (nothing for
Ticket Givers and the loss of a ticket for Ticket Takers), whereas in-
correct actions led to the better and worse outcomes on 20% and
80% of trials, respectively. In the uncontrollable condition, four
new colored robots were presented. Two were Ticket Givers and
two Ticket Takers, but there was no longer a correct action.
Instead, the better and worse outcomes each occurred in 50% of
trials, regardless of which action was taken (Fig. 1C). As previous
studies suggest that controllability inferences often generalize to
subsequent learning environments (Moscarello and Hartley
2017), condition order was counterbalanced across participants.
In each condition, each robot was encountered 45 times, for a total
of 360 trials.

A B C

Figure 1. (A) Example trial sequence. On each trial, one of four different colored robots appeared on the screen (750 ms). Then a fixation cross was
shown (250 ms), followed by the robot’s “button” (1500 ms). For “Go” responses, the border of the button appeared bold for the remainder of the
1500 ms. When the button disappeared, an outcome appeared on the screen (1000 ms). Each trial was followed by a fixation intertrial interval (750 ms).
(B) Each robot was associated with the potential to either win or lose a ticket. Greater Pavlovian bias is reflected in a heightened tendency to take action
in anticipationof reward orwithhold action in anticipationof punishment (bolded diagonal). (C) Reward contingencies across conditions. In the controllable
condition, a correct action for a given robot resulted in the desirable outcome 80% of the time (a ticket for Ticket Givers and nothing for Ticket Takers),
whereas in the uncontrollable condition, outcomes were not contingent upon participant’s actions.
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Behavioral results
In the controllable but not the uncontrollable condition, partici-
pants could learn to take action to win or avoid the loss of tickets.
Thus, we first investigated whether the number of tickets won var-
ied by condition and age. Participants earned more tickets in the
controllable condition (t(174) =−11.2, P<0.001) (Fig. 2) and the
number of tickets won in the controllable condition increased
nonlinearly with age (age-by-condition: t(174) =−2.58, P=0.011;
age-squared-by-condition: t(174) = 2.34, P=0.021). To clarify the
nature of this nonlinear age effect, we implemented a piecewise
linear regression (Muggeo 2003), which identified a single change
point in the relationship between the number of tickets won in the
controllable condition and age at 16.5 yr, with the number of tick-
ets won significantly increasing from age 8 to 16.5 (t(86) = 2.02, P<
0.05) but not from age 16.5 to 25 (t(86) =−0.88, P= 0.38).

Next, we quantified age-related differences in the expression
of Pavlovian bias.We computed Pavlovian performance bias scores
separately for the controllable and uncontrollable condition by
calculating the proportion of reward-invigorated actions for
Ticket Givers (number of Go responses to Win cues/total number
of Go responses) and punishment-suppressed actions for Ticket
Takers (number of No-Go responses to Loss cues/total number of
No-Go responses). Bias scores closer to 1 reflect a greater
Pavlovian bias, whereas scores of 0.5 indicate an absence of bias.
A linear regression model with age and condition as interacting
predictors of Pavlovian performance bias revealed greater bias in
the uncontrollable condition (F(1,88) = 6.75, P= 0.01). No other ef-
fects reached significance (all other P’s > 0.7). Including an addi-
tional age-squared term did not improve model fit.

Given our a priori hypothesis that sensitivity to environmental
controllability would be greatest during adolescence, we split partic-
ipants into three categorical age groups: children (8–12), adolescents
(13–17), and adults (18–27), and tested whether Pavlovian per-
formance bias in each group differed across task conditions.

Pavlovian biases differed significantly between the controllable
and uncontrollable condition only in adolescents (children: t(87) =
−0.52, P=0.6, adolescents: t(87) =−3.54, P<0.001, adults: t(87) =
−0.57, P=0.57, critical α after Bonferroni correction=0.017).
When comparing the magnitude of difference between conditions
across age groups, adolescents showed a greater difference across
conditions compared to children (t(87) = 2.13, P=0.036) and adults
(t(87) = 2.1, P=0.039), with no difference between children and
adults (t(87) = 0.03, P=0.97). However, these between-group compar-
isons did not exceed the significance threshold following
Bonferroni correction (critical α=0.017) (see Fig. 3).

Computational modeling
To understand themechanisms underlying age-related variation in
task performance, we fit participants’ choices with a computation-
almodel that formalizes both the process of inferring environmen-
tal controllability as well as using those controllability inferences
to determine the extent to which state (Pavlovian) versus state-
action (instrumental), the computational statistics that inform
Pavlovian and instrumental responding, respectively, govern
one’s choices (Dorfman and Gershman 2019). The model yields
a Pavlovian weight coefficient w, which governs the relative
weighting of state (Pavlovian) versus state-action (instrumental)
values and reflects dynamic changes in controllability inferences
across the blocks of the task. The model has four free parameters:
an initial learning rate, a single initial state and action value, and
a free parameter governing the initial value of w at the start of
the second block (w2), which can account for the potential carry-
over of Pavlovian bias levels from the first to the second block,
and an inverse temperature. For details regarding model specifica-
tion, model fitting procedures, model comparison, parameter re-
covery, and posterior predictive checks, see Materials and
Methods, Supplemental Material, and Supplemental Figures S2

Figure 3. Pavlovian performance bias was greater in the uncontrollable
than in the controllable condition, particularly for adolescents. Each pair
of points connected by a line represents the Pavlovian bias across the con-
trollable (CON) and uncontrollable (UNCON) conditions for a given par-
ticipant in that age group (children: 8–12, adolescents: 13–17, adults:
18–27). Thicker black lines depict mean Pavlovian bias scores for that
age group. Error bars depict SEM.

Figure 2. Participants won more tickets in the controllable condition,
and tickets won increased nonlinearly from childhood to adulthood.
Each point represents the sum of tickets won in the task per participant
and condition. The lines represent the nonlinear effect of age on tickets
won per condition. The dashed line represents the expected score for
random responding. Shaded areas depict 95% confidence intervals.
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and S3. The primary measure of interest derived from the model is
the Pavlovian weight coefficient w, which governs the relative
weighting of state versus state-action values and reflects individual
differences in the exploration of Go and No-Go responses and re-
sulting dynamic controllability inferences across the blocks of
the task.

To test our hypothesis regarding adolescents’ sensitivity to en-
vironmental controllability, we used a linear mixed-effects model
that included age group, task condition, trial number, the order
in which task conditions were experienced, and their interactions
as predictors.We observed a significant effect of condition (F(1,84) =
23.64, P<0.001) such that Pavlovian weights were higher in the
uncontrollable relative to the controllable condition. We also ob-
served a significant interaction between age group and condition
(F(2,84) = 3.43, P<0.05), which reflected a difference in Pavlovian
weight values across task conditions in the adolescent age group
that was not evident in children or adults (children: t(84) =−2.31,
P=0.024, adolescents: t(84) =−4.86, P<0.001, adults: t(84) =−1.26,
P=<0.21, critical α Bonferroni correction=0.017). In addition,
the order in which task conditions were experienced affected
Pavlovian weight values. Weights were higher for participants
who encountered the uncontrollable condition first than those
who encountered the controllable condition first (F(1,84) = 17.24,
P<0.001).Moreover, we observed a condition-by-order interaction
(F(1,84) = 20.78, P<0.001), such that participants who first experi-
enced the controllable environment showed little change in
Pavlovian weight in the subsequent uncontrollable condition
(t(84) =−0.21, P=0.83), while those initially exposed to the uncon-
trollable condition significantly reduced their Pavlovianweights in
the subsequent controllable condition (t(84) =−6.82, P<0.001) (see
Fig. 4). For a full description of the model’s output and post hoc
analyses, see Supplemental Tables S1 and S2.

None of the model-derived parameter estimates (i.e., initial
stimulus and action values, initial learning rate, and w2) change
with age (all P’s > 0.1, where each best-fittingmodel only contained
a linear age term; see Supplemental Fig. S4A–D). Collectively, this
suggests that adolescent-specific outperformance in the task (and
their corresponding flexibility in model-derived w values) reflects
the interactive effects of these learning parameters on action sam-
pling and inference.

Discussion

In this study, we examined whether cali-
brationof the expressionof Pavlovian and
instrumental learning to the degree of en-
vironmental controllability changedwith
age. We formalized this process of cali-
bration within a computational frame-
work (Dorfman and Gershman 2019) in
which controllability inferences directly
modulate reliance on the state or state-
action values that respectively inform
Pavlovian or instrumental responses. Ex-
tending past work in adults (Dorfman
and Gershman 2019; Csifcsák et al.
2020; Gershman et al. 2021), participants
spanning middle childhood to early
adulthood exhibited greater expression
of Pavlovian bias in the uncontrollable,
relative to the controllable, task environ-
ment. Moreover, we found evidence in
support of our hypothesis that the ability
to flexibly arbitrate between these learn-
ing processes is greatest in adolescence.

Our finding that adolescents exhibit heightened sensitivity to
environmental controllability may reconcile apparently inconsis-
tent findings from past studies. Previous investigations of aversive
conditioning have observed that adolescents exhibit particularly
persistent Pavlovian responses during extinction (McCallum
et al. 2010; Kim et al. 2011; Pattwell et al. 2012). In such experi-
ments, the relation between stimuli and aversive outcomes is
fundamentally uncontrollable—they are predetermined by the ex-
perimenter and cannot be influenced by participants’ actions. An
opposite pattern of developmental differences has been observed
when the environment is controllable. In our previous study
(Raab andHartley 2020),mirroring the present study’s controllable
condition, adolescents exhibited the best performance, reflecting
the reduced influence of Pavlovian bias on their instrumental
learning. Consistent with this finding, adolescent rodents in active
avoidance tasks have been shown to more readily learn to shuttle
across a conditioning chamber to prevent a shock, whereas reflex-
ive freezing hinders such learning in older and younger animals
(Stavnes and Sprott 1975; Bauer 1978). Collectively, both our pre-
sent results and these previous studies suggest that when learning
in uncontrollable environments, adolescents display more robust
Pavlovian reactive behavior than other age groups. However,
when the environment is controllable, adolescents more effective-
ly diminish their expression of Pavlovian bias, enabling better in-
strumental learning.

The observed nonlinear age differences in the sensitivity of ac-
tion selection to environmental controllability diverge from past
studies documenting age-linear improvements in inferences of en-
vironmental controllability (Raab et al. 2022), and in the influence
of diverse forms of task structure knowledge on choice behavior
(Decker et al. 2016; Potter et al. 2017; Cohen et al. 2020;
Nussenbaum et al. 2020b; Smid et al. 2023). Differences in the
manner in which task structure knowledge was acquired and
used across these studiesmay underpin the divergent developmen-
tal patterns. In the current study, participants’ estimates of control-
lability could be derived from their direct experiences of rewards
and punishments, without any need to explicitly represent beliefs
about the structure of the task. In contrast, the studies observing
linear age-related variation assessed whether mental models of
task structure, which needed to be derived fromeither explicitly in-
structed rules or observed state transitions, modulated partici-
pants’ choices. This suggests that while the ability to use mental
models of task structure may improve linearly from childhood to

Figure 4. Model-derived Pavlovian weight for each condition (controllable or uncontrollable) across
blocks, plotted by age group (children: 8–12, adolescents: 13–17, adults: 18–27). Adolescents exhibit
the greatest controllability-dependent adjustment of weights across conditions. Shaded areas depict
95% confidence intervals.
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adulthood, adolescentsmay be particularly skilled at learning from
their direct experiences with reward outcomes, and using this de-
rived information to organize their behavior.

Prior beliefs about environmental controllability have been
shown to generalize, promoting less reactive behavioral tendencies
in subsequent learning contexts (Maier and Seligman 2016;
Moscarello and Hartley 2017). In the present study, we observed a
condition-by-order interaction effect consistent with such generali-
zation—experiencing the controllable condition first prevented in-
creases in Pavlovian weights in the subsequent uncontrollable
condition. Whereas we observed these generalization effects across
task blocks, experiments examining the influence of controllable
or uncontrollable stressors have found evidence of generalization
at longer timescales, with the controllability of initial learning envi-
ronmentsmodulatingperformanceonnovel tasks the followingday
(Boeke et al. 2017), up to a week later (Baratta et al. 2007; Hartley
et al. 2014), and strikingly, even over longer developmental time-
scales. Controllable stress exposure during adolescence has been
shown to yield less reactive behavioral phenotypes in adulthood
(Kubala et al. 2012; Sanchís-Ollé et al. 2019). Collectively, one spec-
ulative interpretation of these findings is that adolescence might be
a “sensitive” developmental period during which individuals derive
global estimates of environmental controllability that alter their
tendencies to express reactive versus proactive behaviors on devel-
opmental timescales. Such a process would be consistent with theo-
retical accounts of developmental specialization, which proposed
that organisms sample their early environments to derive the
most accurate estimates of behaviorally relevant statistics and adapt
their behavior in amanner that is increasingly optimized to their id-
iosyncratic early environments into adulthood (Frankenhuis and
Panchanathan 2011). In this manner, heightened sensitivity to re-
ward controllability during adolescence, when sampled across
diverse real-world environments, may generalize to influence
behavior on longer timescales. While speculative, such an account
could represent a developmental mechanism modulating risk for
psychopathology, as numerous disorders associated with height-
ened reactive responding and diminished perceptions of control
(e.g., addiction, affective disorders, PTSD, and OCD) (Wasserman
et al. 1974; Poulos et al. 1981; Belin et al. 2009; Waters et al. 2009;
Hammack et al. 2012; Cartoni et al. 2016; Huys et al. 2016;
Apergis-Schoute et al. 2017; Mkrtchian et al. 2017; Cooper and
Dunsmoor 2021) commonly emerge during adolescence (Maier
and Seligman 1976; Lee et al. 2014; Pauls et al. 2014; Cousijn
et al. 2018; Volkow and Boyle 2018).

Individuals tend to perceive control over events, even when
they are uncontrollable (Langer 1975; Fontaine et al. 1993;
Taylor and Brown 1994; Fein 1995; Fiscella and Franks 1997;
Morgan and Tromborg 2007; see Na et al. 2023 for a review). The
aforementioned effects of the order in which the task conditions
were encountered are consistent with such a bias toward a percep-
tion of controllability. Following an initial controllable condition,
Pavlovian weights remained low, indicating that prior control ex-
periences are difficult to override. Conversely, when an uncontrol-
lable condition was followed by a controllable one, there was a
greater reduction in the Pavlovian weights, indicating that initial
experiences of lack of control could readily be counteracted by sub-
sequent experiences of control. Such a bias toward inferences of
controllability couldhave positive effects: beliefs of uncontrollabil-
ity can lead to reactive avoidance biases that inhibit exploration
and lead to learning traps (Rich andGureckis 2018), while a bias to-
ward control can facilitate exploration and identification of affor-
dances for action (Huys and Dayan 2009). Indeed, we tend to
learn more from actions that are freely chosen (Cockburn et al.
2014; Palminteri et al. 2017; Katzman and Hartley 2020). The
bias toward inferences of control may be facilitated by the affective
consequences of perceived control: having control over choices is

often preferred, even when it does not necessarily lead to better
gains (Bown et al. 2003; Cockburn et al. 2014; Nussenbaum et al.
2023), and perceived controllability promotes positive emotions
(Véronneau et al. 2005; Weinstein and Mermelstein 2007; Stolz
et al. 2020). Thus, while a controllability bias does not enhance
performance within our task, it may foster adaptive behavior in
the diverse real-world environments that are increasingly encoun-
tered across adolescence (Saragosa-Harris et al. 2022).

This study sought to determine whether adolescents might
exhibit the greatest flexibility in adapting their expression of
Pavlovian bias to the controllability of the environment. Our find-
ings supported this hypothesis when we considered adolescents as
a categorical group, but not when age was treated as a continuous
variable. Adolescence is a developmental stage characterized by
profound environmental and biological transformations. These in-
clude shifts in social dynamics, exposure to novel environmental
stressors, significant neurobiological restructuring, and surges in
hormones such as testosterone and estrogen (Blakemore and
Choudhury 2006; Burnett and Blakemore 2009; Somerville and
Casey 2010; Schulz and Sisk 2016). Individual variation arising
from these multifaceted changes may contribute to corresponding
changes in behavioral phenotypes. As suchmaturational processes
have significant individual variability in their timing (Mendle et al.
2010; Marceau et al. 2011), it is possible that numerical age may
not be tightly correlated with the underlying causal mechanisms
that inform controllability-dependent action selection across ado-
lescence. Despite these complexities, our data suggest that adoles-
cence is a developmental stage characterized by heightened
sensitivity to environmental controllability. This sensitivity may
be adaptive, facilitating the discovery of actions that are beneficial
in the novel environments typically encountered during the tran-
sition to independence, and enabling long-term generalization of
expectations for the environments one might encounter in adult-
hood. However, this heightened sensitivity may also confer vul-
nerability, as exposure to uncontrollable environments during
this period may foster reactive behaviors that may prove maladap-
tive in future controllable environments.

Materials and Methods

Participants
Ninety individuals, ages 8–27 yr, from the New York City area, took
part in the study. Two additional children were tested but excluded
due to technical errors in the task. Our final sample comprised 30
children (8–12 yr old, mean=10.48, SD=1.56, n=15 female), 30 ad-
olescents (13–17 yr old,mean=15.59, SD=1.36, n=15 female), and
30 adults (18–27 yr old, mean=22.94, SD=2.85, n=15 female) (see
Supplemental Fig. S1).Our target sample size of 90was determined a
priori based on recent studies that used computational modeling to
investigate developmental changes in learning (Cohen et al. 2020;
Nussenbaum et al. 2020a; Raab and Hartley 2020). All participants
reportedno color blindness,moodor anxiety disorders, learningdis-
abilities, or current use of β-blockers or psychoactive medication.
Forty percent of participants self-identified as Asian, 35.6% as
Caucasian, 14.4% asmore than one race, and 10% as Black. In addi-
tion, 16.7% of participants self-identified as Hispanic.

Participants were paid $15/h and were told that their perfor-
mance determined their bonus payment. In reality, all participants
received a $5 bonus. The study was conducted according to the
procedures approved by the New York University Committee on
Activities Involving Human Subjects. Adult participants and par-
ents ofminors providedwritten informed consent andminors pro-
vided assent before the study.

Procedure
Participants completed both controllable and uncontrollable con-
ditions of the orthogonalized Go/No-Go task in counterbalanced
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order. Before the task, participants completed extensive, interac-
tive instructions and practice during which they learned about
the task’s probabilistic reward structure and how to press or not
press the buttons. After participants completed the first block of
the task, they were instructed that they would play again with a
new set of robots. They were not informed of the different reward
probabilities across blocks.

Following the learning task, we tested participants’ explicit
knowledge about the action and valence of each robot.
Participants saw a given robot and were asked to indicate whether
it was better to press the button or not for this robot and whether
the robot was a “Ticket Giver” or “Ticket Taker.” Both the order for
which the condition was probed first and the order in which the
robots appeared were randomized. The task was coded using
Cogent 2000, a MATLAB toolbox.

Model-free analysis methods
All analysis codes and anonymized data are publicly available
online at https://osf.io/e49ua/. We used R version 4.1.0 and
MATLAB R2021a for statistical analyses. All continuous variables
(e.g., age) were z-scored before inclusion as predictors in any regres-
sionmodels. In all analyses, to test for potential quadratic effects of
age (e.g., adolescent-specific effects), we assessed whether the addi-
tion of an age-squared term improved the model fit (Somerville
et al. 2013; Raab and Hartley 2020). Age-squared was computed
by squaring the z-scored age term.Mixed-effects regressionmodels
were conducted using the optimizer “bobyqa” with one million
model iterations in the afex package version 1.3-0 (Singmann
et al. 2016). Except where noted, models included the maximal
random-effects structure (i.e., random intercepts, slopes, and their
correlations acrossfixed effects for each subject) tominimize Type I
error (Barr et al. 2013). If a model did not converge, we reduced the
random-effects structure. For all linear models, the significance of
fixed effects was determined by an ANOVA using the Kenward–
Roger method to calculate degrees of freedom. Post hoc tests
were implemented with emmeans package version 1.8.7. Critical
α value for multiple comparisons was determined using the
Bonferroni method.

Computational modeling
We fit participants’ choiceswith a computationalmodel that yields
a Pavlovian weight coefficient w, which governs the relative
weighting of state (Pavlovian) versus state-action (instrumental)
values and reflects dynamic changes in controllability inferences
across the blocks of the task. In this model, the Pavlovian learning
process estimates the mean reward value for a given stimulus (û(s)),
whereas the instrumental learning process estimates the mean re-
ward value for a given stimulus and action (û(sa)). The value
of both estimates is updated on each trial through an
error-driven learning process (here, described for ûs, but which
also applies to ûsa):

ûs(t) = ûs(t−1) + h−1
s d (1)

where δ is the prediction error (r− ûs), which reflects how much
better or worse an outcome (r) was than expected. η is a dynamic
learning rate that is incremented by 1 after each encounter with
the stimulus, yielding smaller value updates on each trial.
Additionally, a single initial value for both stimulus and action val-
ues and an initial learning rate are free parameters. Initial stimulus
and action values reflect individual reward expectations at the be-
ginning of the task, while the initial learning rate determines the
degree to which these values should be updated following each en-
counter with a stimulus.

Instrumental values are equal to action value estimates
(Vi(s, a) = ûsa), whereas the Pavlovian value is equal to the stimulus
value estimate (Vp(s, a) = ûs) for Go actions, or 0 for No-Go actions.
This results in positive state value estimates promoting “Go” re-
sponses, and negative value estimates discouraging “Go” respons-
es, thus promoting “No-Go” responses.

In controllable environments, using instrumental values to
inform action selection will yield more rewards. In contrast, in un-
controllable environments, where actions do not influence reward
outcomes, Pavlovian and instrumental values will predict reward
equally well. Thus, the differential reward-predictive ability of in-
strumental versus Pavlovian values provides evidence for control-
lability or uncontrollability. Within the model, the degree of
environmental controllability (L) is estimated using a log-odds
convention, with the prior log-odds given by:

L0 = log
P(uncontrollable)
P(controllable)

(2)

The posterior log-odds are updated according to Equation 3, which
assesses the predictive accuracy of state versus state-action values.
If the state-action (instrumental) values fail to forecast a more
favorable outcome than the state (Pavlovian) values, Lwill rise, sig-
naling an increasing perception that the environment is uncon-
trollable.

DL = log(1− |ûs|)− log(1− |ûs,a|) if r = 0
log|ûs| − log|ûs,a| else

{
(3)

Using the relation w = 1/(1+ exp(L)), the Pavlovian weight pa-
rameter (w) is updated on each trial. A larger Pavlovian weight
(i.e., a greater posterior probability that the learner is in the un-
controllable environment) drives reflexive Pavlovian behavior;
whereas a smaller Pavlovian weight yields a greater reliance on in-
strumental actions.

V(s, Go) = (1−w)VI (s, Go)+ wVp(s, Go) (4)

The Pavlovian weight was initialized at 0.5 at the start of the first
block, reflecting unbiased beliefs about the controllability of the
environment, and its value at the beginning of the second block
was a free parameter (w2) estimated for each individual. The value
of L at the start of each half of the task was initialized with respect
to each of these initial weights as:

L = log(initial weight)− log(1− initial weight) (5)

Weighted action values were converted into probabilities using a
softmax choice function with an inverse temperature parameter
(β) governing action stochasticity:

P(Go|s) = exp[bV(s, Go)]
exp[bV(s, Go)]+ exp[bV(s, No-Go)]

(6)

Previous studies introducing this model included separate initial
values (stimulus and action values and learning rate) for each
task condition; controllable or uncontrollable (Dorfman and
Gershman 2019; Gershman et al. 2021). Here, we tested two addi-
tional variants of the originalmodel: thefirst was a simpler version,
with a single initial reward and learning rate parameter used across
both blocks. The second variant introduced a single initial reward
and learning rate parameter as well as an additional free parameter
w2 to account for the potential carryover of Pavlovian bias levels
from the first to the second block.While the originalmodel was fa-
vored in model comparison (Supplemental Fig. S2), it had low pa-
rameter recoverability. Hence, we adopted a simpler version of this
model with a single initial reward and learning rate parameter used
across both and the additional free parameter w2. This model had
the second-bestmodel fitting results, but better parameter recovery
compared to the original model. For additional details regarding
model fitting procedures, model comparison, parameter recovery,
and posterior predictive checks, see Supplemental Material and
Supplemental Figures S2 and S3.
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